Navigation rapide
Leçon 159 : Formes linéaires et dualité en dimension finie. Exemples et applications.
Dernier rapport du Jury : 2016
159 - Formes linéaires et dualité en dimension nie. Exemples et applications.
Il est important de bien placer la thématique de la dualité dans cette leçon ; celle-ci permet de mettre en évidence des correspondances entre un morphisme et son morphisme transposé, entre un sous-espace et son orthogonal (canonique), entre les noyaux et les images ou entre les sommes et les intersections. Bon nombre de résultats d’algèbre linéaire se voient dédoublés par cette correspondance. Les liens entre base duale et fonctions de coordonnées doivent être parfaitement connus. Savoir calculer la dimension d’une intersection d’hyperplans via la dualité est important dans cette leçon.
L’utilisation des opérations élémentaires sur les lignes et les colonnes permet facilement d’obtenir les équations d’un sous-espace vectoriel ou d’exhiber une base d’une intersection d’hyperplans. Cette leçon peut être traitée sous différents aspects : géométrique, algébrique, topologique ou analytique. Il faut que les développements proposés soient en lien direct avec la leçon. Enfin rappeler que la différentielle d’une fonction à valeurs réelles est une forme linéaire semble incontournable.
Autres rapports
2015
159 - Formes linéaires et dualité en dimension finie. Exemples et applications.)
Il est important de bien placer la thématique de la dualité dans cette leçon : celle-ci permet de créer une correspondance féconde entre un morphisme et son morphisme transposé, un sous-espace et son orthogonal (canonique), les noyaux et les images, les sommes et les intersections. Bon nombre de résultats d'algèbre linéaire se voient dédoublés par cette correspondance.
Les liens entre base duale et fonctions de coordonnées doivent être parfaitement connus. Savoir calculer la dimension d'une intersection d'hyperplans via la dualité est important dans cette leçon.
L'utilisation des opérations élémentaires sur les lignes et les colonnes permet facilement d'obtenir les équations d'un sous-espace vectoriel ou d'exhiber une base d'une intersection d'hyperplans. Cette leçon peut être traitée sous différents aspects : géométrique, algébrique, topologique, analytique, etc. Il faut que les développements proposés soient en lien direct, comme toujours, avec la leçon ; proposer la trigonalisation simultanée est un peu osé ! Enfin rappeler que la différentielle d'une fonction réelle est
une forme linéaire semble incontournable.
2014
159 - Formes linéaires et dualité en dimension finie. Exemples et applications.)
Il est important de bien placer la thématique de la dualité dans cette leçon : celle-ci permet de créer une correspondance féconde entre un morphisme et son morphisme transposé, un sous-espace et son orthogonal (canonique), les noyaux et les images, les sommes et les intersections. Bon nombre de résultats d'algèbre linéaire se voient dédoublés par cette correspondance.
Les liens entre base duale et fonctions de coordonnées doivent être parfaitement connus. Savoir calculer la dimension d'une intersection d'hyperplans est important dans cette leçon. L'utilisation des opérations élémentaires sur les lignes et les colonnes permet facilement d'obtenir les équations d'un sous-espace vectoriel ou d'exhiber une base d'une intersection d'hyperplans. Cette leçon peut être traitée sous différents aspects : géométrique, algèbrique, topologique, analytique, etc. Il faut que les développements proposés soient en lien direct, comme toujours, avec la leçon ; proposer la trigonalisation simultanée est un peu osé ! Enfin rappeler que la différentielle d'une fonction réelle est une forme linéaire semble incontournable.
Développements :
- Enveloppe convexe de On(R)
- Translatés d'une fonction
- Morphisme d'algèbre sur C(K,R)
- Théorème de Cartan-Dieudonné
- Détermination du nombre de racines distinctes d'un polynôme
- Théorème de point fixe de Kakutani (par Hahn-Banach)
- Extrema liés
- Hahn-Banach géométrique
- Invariants de similitude (réduction de Frobenius)
- Générateurs de O(E)
- Théorème de Barany
- Réduction de Jordan (par la dualité)
Plans/remarques :
Plan de Promo ENSL 2016
2016