Navigation rapide
Leçon 243 : Convergence des séries entières, propriétés de la somme. Exemples et applications.
Dernier rapport du Jury : 2016
Les candidats évoquent souvent des critères (Cauchy, D’Alembert) permettant d’estimer le rayon de convergence mais oublient souvent la formule de Cauchy-Hadamard. Le jury attend bien sûr que le candidat puisse donner des arguments justifiant qu’une série entière en 0 dont le rayon de convergence est R est développable en série entière en un point $z_0$ intérieur au disque de convergence et de minorer le rayon de convergence de cette série. Sans tomber dans un catalogue excessif, on peut indiquer les formules de développement de fonctions usuelles importantes ($\exp$, $\log$, $1/(1-z)$, $\sin$, ...). Le jury attend également que le candidat puisse les donner sans consulter ses notes. En ce qui concerne la fonction exponentielle, le candidat doit avoir réfléchi au point de vue adopté sur sa définition et donc sur l’articulation entre l’obtention du développement en série entière et les propriétés de la fonction. À ce propos, les résultats sur l’existence du développement en série entière pour les fonctions dont on contrôle toutes les dérivées successives sur un voisinage de 0 sont souvent méconnus.
Le théorème d’Abel (radial ou sectoriel) trouve toute sa place mais doit être agrémenté d’exercices pertinents. Réciproquement, les théorèmes taubériens offrent aussi de jolis développements. On pourra aller plus loin en abordant quelques propriétés importantes liées à l’analyticité de la somme d’une série entière.
Autres rapports
2015
243 - Convergence des séries entières, propriétés de la somme. Exemples et applications.)
Le théorème d'Abel (radial ou sectoriel) trouve toute sa place mais doit être agrémenté d'exercices pertinents. Il est regrettable de voir beaucoup de candidats qui maîtrisent raisonnablement les classiques du comportement au bord du disque de convergence traiter cette leçon en faisant l'impasse sur la variable complexe. C'est se priver de beaux exemples d'applications ainsi que du théorème de composition, pénible à faire dans le cadre purement analytique et d'ailleurs très peu abordé. Le jury attend aussi que le candidat puisse donner des arguments justifiant qu'une série entière en $0$ dont le rayon de convergence est $R$ est développable en série entière en $0$ en un point $z_0$ intérieur au disque de convergence et de minorer le rayon de convergence de cette série.
2014
243 - Convergence des séries entières, propriétés de la somme. Exemples et applications.)
Il est regrettable de voir beaucoup de candidats qui maîtrisent raisonnablement les classiques du comportement au bord du disque de convergence traiter cette leçon en faisant l'impasse sur la variable complexe. C'est se priver de beaux exemples d'applications ainsi que du théorème de composition, pénible à faire dans le cadre purement analytique et d'ailleurs très peu abordé.
Développements :
Plans/remarques :
Pas de plans pour cette leçon.