Navigation rapide
Leçon 122 * : Anneaux principaux. Exemples et applications.
Dernier rapport du Jury : 2016
Cette leçon n’est pas uniquement théorique, Il est possible de présenter des exemples d’anneaux principaux classiques autres que $Z$ et $K[X]$ (décimaux, entiers de Gauss ou d’Eisenstein), accompagnés d’une description de leurs irréductibles. Les applications en algèbre linéaire ne manquent pas et doivent être mentionnées. Par exemple, les notions de polynôme minimal sont très naturelles parmi les applications. Les anneaux euclidiens représentent une classe d’anneaux principaux importante et l’algorithme d’Euclide a toute sa place dans cette leçon pour effectuer des calculs.
S’ils le désirent, les candidats peuvent aller plus loin en s’intéressant à l’étude des réseaux, à des exemples d’anneaux non principaux, mais aussi à des exemples d’équations diophantiennes résolues à l’aide d’anneaux principaux. À ce sujet, il sera fondamental de savoir déterminer les unités d’un anneau, et leur rôle au moment de la décomposition en facteurs premiers. De même, le calcul effectif des facteurs invariants de matrices à coefficients dans certains anneaux peut être fait.
Autres rapports
2015
122 - Anneaux principaux. Applications.)
C'est une leçon où les candidats ont tendance à se placer sur un plan trop théorique. Il est possible de présenter des exemples d'anneaux principaux classiques autres que $\mathbb{Z}$ et $K[X]$ (décimaux, entiers de Gauss ou d'Eisenstein), accompagnés d'une description de leurs irréductibles.
Les applications en algèbre linéaire ne manquent pas, il serait bon que les candidats les illustrent. Par exemple, il est étonnant de ne pas voir apparaître la notion de polynôme minimal parmi les applications.
Le candidat plus cultivé peut donner des exemples d'anneaux non principaux, mais aussi des exemples d'équations diophantiennes résolues à l'aide d'anneaux principaux. A ce sujet, il sera fondamental de savoir déterminer les unités d'un anneau, et leur rôle au moment de la décomposition en facteurs
premiers. On a pu noter dans cette leçon l'erreur répandue que $1+i$ et $1-i$ sont des irréductibles premiers entre eux dans l'anneau factoriel $\mathbb{Z}[i]$.
2014
122 - Anneaux principaux. Exemples et applications.)
Les plans sont trop théoriques. Il est possible de présenter des exemples d'anneaux principaux classiques autres que $Z$ et $K[X]$ (décimaux, entiers de Gauss ou d'Eisenstein), accompagnés d'une description de leurs irréductibles. Les applications en algèbre linéaire ne manquent pas, il serait bon que les candidats les illustrent. Par exemple, il est étonnant de ne pas voir apparaître la notion de polynôme minimal parmi les applications.
On peut donner des exemples d'anneaux non principaux, mais aussi des exemples d'équations diophantiennes résolues à l'aide d'anneaux principaux. A ce sujet, il sera fondamental de savoir déterminer les unités d'un anneau, et leur rôle au moment de la décomposition en facteurs premiers.
On a pu noter dans cette leçon l'erreur répandue que $1+i$ et $1-i$ sont des irréductibles premiers entre eux dans l'anneau factoriel $Z[i]$.
Développements :
- C[X,Y]/(X^2+Y^2-1) est principal
- Théorème des deux carrés de Fermat (par les entiers de Gauss)
- Endomorphismes semi-simples
- Algorithme de Berlekamp
- Nullstellensatz via le résultant (théorème des zéros de Hilbert)
- Théorème de Lüroth
- Théorème de Gauss (polygones constructibles)
- Théorème de Pfister
- invariants de Smith